LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2023

16/17/18UST2MCO2 - DISCRETE DISTRIBUTIONS

Date: 13-05-2023
Dept. No. \square Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

Section A:
Answer ALL the questions:
1 Define the marginal distribution
2 When do we say that the two random variables X and Y are stochastically independent?
3 In a binomial distribution consisting of 5 independent trials, probabilities of 1 and 2 successes are 0.4096 and 0.2048 are respectively. Find the parameter 'p' of the distribution.
4 Define discrete uniform distribution.
5 Write any 4 examples for Poisson distribution.
6 Mark the recurrence formula for moments of Binomial distribution.
$7 \quad$ State any two properties of the negative binomial distribution.
8 Characterize Geometric distribution.
9 Describe multinomial distribution.
10 Under what conditions the hyper geometric distribution tends to binomial distribution?

Section B:

Answer ANY FIVE questions:
11 The joint probability distribution of two random variables X and Y is given by $P(X=0, Y=1)=1 / 3, P(X=1, Y=-1)=1 / 3$ and $p(X=1, Y=1)=1 / 3$
find (i) marginal distributions of X and Y
(ii) $\mathrm{P}(\mathrm{X}=1 / \mathrm{Y}=1)$
(iii) $\mathrm{E}[\mathrm{X}]$
(iv) $\mathrm{E}[\mathrm{X} / \mathrm{Y}=1]$

Derive the MGF of binomial distribution. Hence find Mean and Variance.
14 A car hire firm has two cars, which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 15. Calculate the proportion of days on which (i) neither car is used and (ii) the proportion of days on which some demand is refused.

16 Prove that the sum of independent Poisson variates is also a Poisson variate.
17 Obtain the moments of multinomial distribution.
18 Let $\mathrm{X}_{1}, \mathrm{X}_{2}$ be independent random variables each having geometric distribution, $q^{k} p, k=0,1,2, \ldots \ldots$ show that the conditional distribution of X_{1} given $X_{1}+X_{2}$ is uniform.

Section C:
Answer ANY TWO questions:
$(2 \times 20=40)$
19 The joint probability distribution of X and Y is given below :

X	-1	+1
Y		
0	$1 / 8$	$3 / 5$
1	$2 / 8$	$2 / 8$

Find the (i) $\mathrm{E}(\mathrm{X})$ and E (Y) (ii) $\mathrm{E}(\mathrm{XY})$ (iii) Covariance of X, Y (iv) the correlation between X and Y .

20 a) Obtain the density function of a Poisson distribution as a limiting case of Binomial distribution.
b) Obtain MGF of Negative Binomial distribution and hence obtain its mean and variance

21a) Suppose that the number of telephone calls coming into a telephone exchange between 10 am and 11 am , say, X_{1} is a random variable with Poisson distribution with parameter 2. Similarly the number of calls arriving between 11 am and 12 noon, say, X_{2} has a Poisson distribution with parameter 6. If X_{1} and X_{2} are independent, what is the probability that more than 5 calls come in between 10 am and 12 noon?
b) Obtain binomial distribution as a limiting case of hyper geometric distribution.

22 a) Derive the mean and variance of Hyper geometric distribution 10

Let X be a discrete random variable having geometric distribution with 10
b) parameter p , obtain its mean and variance through M.G.F.

